Geometry September 23, 2013
Reflections and Rotations with Change of Coordinates

Name period

1. Complete the table: Record the coordinates of the images resulting from a reflection of the pre-image points in the line $y=0$ which is the equation of the -axis.
(Can you do this without graphing?)

Pre-image	Image
a. $(4,7)$	
b. $(-2,-9)$	
c. $(3,-8)$	
d. $(-6,1)$	
e. (x, y)	

2. Complete the table: Record the coordinates of the images resulting from a reflection of the pre-image points in the line $x=0$ which is the equations of the __-axis.
(Can you do this without graphing?)

Pre-image	Image
a. $(-3,9)$	
b. $(5,-2)$	
c. $(7,8)$	
d. $(-6,-1)$	
e. (x, y)	

3.

Reflect $\triangle P Q R$ in the line $y=x$. Label $\Delta P^{\prime} Q^{\prime} R^{\prime}$ and record the image coordinates in the table below. Generalize for any (x, y).

Pre-image	Image
$P(-5,5)$	
$Q(-2,4)$	
$R(-3,2)$	
(x, y)	

4.

Reflect $\Delta K L M$ in the line $y=-x$. Label $\Delta K^{\prime} L^{\prime} M^{\prime}$ and record the image coordinates in the table below. Generalize for any (x, y).

Pre-image	Image
$K(-4,-2)$	
$L(-2,-3)$	
$M(-5,-5)$	
(x, y)	

5.

Reflect $\triangle X Y Z$ in the line
$y=\frac{-1}{2}(x+5)+4$. Graph the line.
Label $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ and record the image coordinates in the table below.

Pre-image	Image
$X(5,5)$	
$Y(4,2)$	
$Z(2,3)$	
Currently, we do not know how to	
generalize this reflection.	

6. Rotate the shape lying on the
x-axis $90^{\circ}, 180^{\circ} \& 270$
clockwise about the origin.

Record the coordinates of the images of point A rotated $90^{\circ}, 180^{\circ} \& 270^{\circ}$ clockwise about the origin.

Pre-image	$A(-4,-2)$
Rotation	clockwise
$90^{\circ} \mathrm{CW}$	
$180^{\circ} \mathrm{CW}$	
$270^{\circ} \mathrm{CW}$	

7. Rotate the shape lying on the x-axis $90^{\circ}, 180^{\circ} \& 270$ clockwise about the origin.

Record the coordinates of the images of point B rotated $90^{\circ}, 180^{\circ} \& 270^{\circ}$ clockwise about the origin.

Pre-image	$B(2,3)$
Rotation	clockwise
$90^{\circ} \mathrm{CW}$	
$180^{\circ} \mathrm{CW}$	
$270^{\circ} \mathrm{CW}$	

8. Rotate the shape lying on the x-axis $90^{\circ}, 180^{\circ} \& 270^{\circ}$ clockwise about the origin.

											-
											-
						\mathbf{C}					

Record the coordinates of the images of point C rotated
$90^{\circ}, 180^{\circ} \& 270^{\circ}$ clockwise about the origin.

Pre-image	$C(1,-5)$
Rotation	clockwise
$90^{\circ} \mathrm{CW}$	
$180^{\circ} \mathrm{CW}$	
$270^{\circ} \mathrm{CW}$	

9. Examine the relationship between the pre-image and image points in \# 6-7-8 above to find the general pattern. When any (x, y) point is rotated about the origin $90^{\circ} C W$ the resulting image has coordinates \qquad .

When any (x, y) point is rotated about the origin $180^{\circ} C W$ the resulting image has coordinates \qquad .

When any (x, y) point is rotated about the origin $270^{\circ} \mathrm{CW}$ the resulting image has coordinates \qquad .
10. Reflect hexagon KLMNOP in the line $y=x$.

11. Rotate hexagon KLMNOP $90^{\circ}, 180^{\circ} \& 270^{\circ}$
clockwise about the origin.

