GGB Lab5: Shortest Distance from a Point to a Line
(revised for Geogebra from Exploring Geometry with The Geometer's Sketchpad Key Curriculum Press, 2012, pp 37)

Measuring the distance between two points is easy, but how do you measure the distance between a point and a line? There are many different distances, depending on what point you measure to on the line. What is the shortest distance?

OBJECTIVE: In this investigation you will discover the shortest distance from a point to a line.

SKECTH and INVESTIGATE: Open a new GGB file and save it as "Lab5a Shortest Distance from Point to Line"
Answer the questions in your composition book as you complete the lab and questions are asked.

1 Construct a textbox containing: "Lab 5a: Shortest Distance from a Point to a Line"

2 Construct line A
 left click in graphics window to place point A, move and left click again to place point B.

3 Construct point C not on line $A B$. Use

and
 click off the line $A B$.

4 Construct point D on line $A B$. Use

5 Construct segment $C D$, where point D is on line $A B$. Use
Segment between Two Points Select two points and select point C then point D.

6 Measure segment CD. Use Distance or Length Select two points, segmant, polygen, or circle and select point C then point D.
7 Drag point D back and forth along the line and observe where CD becomes great and where it becomes small. 8 Locate point D to make segment $C D$ as small as possible.
9 Measure the distance from point C to line $A B$. Use ${ }^{\text {cm }}$ Delect two points, segment, polygon, or circle and select point C then select line $A B$.

QUESTION 1: Drag point D so that length $C D$ is not the smallest. How does the distance from segment CD compare to the distance from C to line $A B$?
QUESTION 2: Drag point D so that length $C D$ is the smallest. What appears to be the relationship between segment $C D$ and line $A B$ when distance $C D$ is the smallest?

10 Measure angle CDB to confirm your conjecture in Question 2. Use
Angle
Select three points or two lines and select point ight click on the shaded angle, choose Object Properties Angle Between 0° and 180°, and select an angle between 0 and 180.

11 Construct a perpendicular line from point C to line $A B$. Use ${ }^{\text {Perpendicular Line }}$ Select point and perpenditular line select point C then line $A B$.
12 Construct point E, the intersection point of line $A B$ and the perpendicular line. Use

Intersect Two Objects
Select two objects or click directly on intersection and select the intersection.
13 Hide the perpendicular line, then construct segment CE. Change the color of this segment and of point E to red. Change the segment to a dotted line.
14 Drag point D until the distance from point C to line $A B$ is the shortest. This should confirm your conjecture.

QUESTION 3: How would you define the distance from a point to a line? Record your definition using a complete sentence.

