OBJECTIVE: In this activity you will construct a perpendicular bisector using Geogebra's freehand tools - the equivalents to Euclid's compass and straightedge.

SKECTH and INVESTIGATE: Open a new GGB file and save it as "Lab2 Construct a Perpendicular Bisector"

 Answer the questions in your composition book as you complete the lab and questions are asked.1 NOTE: Get in the habit of pressing ESC (the escape button on your keyboard) to get back to the move tool

Move
Drag or select objects (Esc) especially after using other drop-down menu commands.
2 NOTE: When you make a mistake, it is easy to undo. Press Ctrl-Z or Command-Z either once or repeatedly to return to a previous state of your sketch.
3 NOTE: Because we are using freehand tools we do not want to use the axes or the grid. If the Axes and Grid are showing, turn them off. Right click in the white space of the graphics screen and select Axes and Grid within the menu to turn OFF Axes and Grid.

Now you will begin the work to make the Perpendicular Bisector dynamic sketch. Follow these instructions which will always first state what you need to do and then second state how you are to do it. So if you read you will be successful.

4 Construct segment $A B$. Use \square Segment between Two Points
Select two points left click in graphics window to place point A, move and left click again to place point B. Press ESC.
5 Construct circle $A B$, using point A as the center and point B as the endpoint of the radius. Use Circle with Center through Point point B.
6 Construct circle $B A$, using point B as the center and point A as the endpoint of the radius. Use Select center point then point on cirtle select point B then
 point A. Press ESC.
7 Construct point C and point D, the intersection of the two circles as shown in the diagram.

. When you move the cursor over the intersection both circles should be bolder, click to place point C. Repeat to place point D at the other intersection. Drag point A or point B to be sure that C and D remain at the intersection of the circles. Press ESC
8 Construct line CD. Use $\begin{aligned} & \text { Line through Two Points } \\ & \text { Select two points }\end{aligned}$ select point C, then point D. Drag point A or point B to make sure the construction stays together. If the construction "falls apart" then you must recreate it. Press ESC.

QUESTION 1: Line CD is the perpendicular bisector of segment AB. Without measuring, what can you say about the distances $A C$ and $B C$ and the distances $A D$ and BD? What evidence allows you to make this conclusion?

9 Construct point E the intersection of segment $A B$ and line $C D$.
 and select the segment $A B$ then select line CD. Press ESC.

QUESTION 2: What is special about point E? Move points A and B to confirm your answer. What name is given to point E that describes its relationship to endpoints A and B ?

10 Insert a Check Box to show/hide the two circles. Use
Check Box to Show / Hide Objects Click on the Graphics View to specify position click in the graphics window and the Check Box dialogue box will open. In the Caption window type "Show Two Circles". Now select each of the circles in the graphics window. Select Apply. And the "Show Two Circles" Check Box will appear in the graphics window. Press ESC. Uncheck the box to hide the two circles

11 Construct point F on line CD. Use \bullet^{A} Click on the Graphics View or on ine, Anetion, or curve and place F on
 line CD. Press ESC. Drag point F. Notice that is will always stay on line CD.

12 Measure distances FA and FB. Use Select two points, segment, polygon or circle and select point F then point A. Repeat and select point F then point B. Press ESC. Move text box measurements so they are not overlapping and you are able to read them both.

QUESTION 3: Drag point F up and down the line CD. Write a conjecture about any point on the perpendicular bisector line CD to the segment AB. State your conjecture as an IF-THEN conditional statement. Now write the converse of the IF-THEN statement.

EXPLORE MORE:
13 In the same sketch, investigate the converse as follows: Construct point G not on the perpendicular bisector line CD. Measure distance GA and GB . Move point G until those distances are equal.

QUESTION 4: Where is point G when distances GA and GB are equal? Explain how this demonstrates the converse you wrote.

14 In this sketch, move the objects you have constructed off to the side to make space for the final construction.

15 Construct Line H
 left click in graphics window to place point H , move and left click again to place point I.

16 Construct a point J not on line HI. Use \quad| A | $\begin{array}{l}\text { New Point } \\ \text { click on the Graphics View or on line, Anction, or curve }\end{array}$ to place point J off line |
| :--- | :--- | HI.

17 Reflect point J in the line HI. Use $\begin{aligned} & \text { Refliect Object about Line } \\ & \text { Select object to refect then line of refection }\end{aligned}$ and select point J as the object to be reflected, then select line HI as the line of reflection. Point J' will appear on the opposite side of the line HI .
 and notice how J' behaves.

QUESTION 5: How is the segment JJ' related to the line of reflection HI?

