Geometry HW October 22, 2013

Name
$\begin{array}{llllll}\text { period } & 1 & 2 & 3 & 5 & 6\end{array}$

DIRECTIONS: Complete these questions on your own graph paper. Show all work that leads to your answers.

1. Graph the points: $A(4,6), B(8,3), C(1,-5)$ and $D(-12,5)$ on the coordinate grid.

Your coordinate grid should allow for $X \in[-15,18]$ and $Y \in[-8,12]$.
a. What is the distance point A is from the y-axis? Locate all lattice points that are on the y-axis and 5 units from point A.
b. What is the distance point B is from the x-axis?. Locate all lattice points that are on the x-axis and 5 units from point B.
c. What is the distance point C is from the x-axis? Locate all lattice points that are on the x-axis and 13 units from C.
d. What is the distance point D is from the y-axis? Locate all lattice points that are on the y-axis and 13 units from D.
2. Given the coordinate points $P(-124,-37)$ and $Q(-20,56)$
a. Write the general formula for slope. Write the numerical expression to find the slope. Simplify the slope value to a reduced fraction.
b. Write the general formula for distance. Write the numerical expression to find the distance. Simplify the distance to a square root.
c. Write the general formula for midpoint. Write the numerical expression to find the midpoint. Simplify the midpoint coordinate to reduced fractions or integers.
3. Show all of work to solve the system of equations using the elimination method:

$$
\begin{aligned}
& -5 x+2 y=10 \\
& 3 x-6 y=-18
\end{aligned}
$$

Concepts: slope, distance, midpoint formulas, solve system by elimination, shortest distance from point to line, equidistant points from point to line using Pythagorean theorem.

