Geometry	December 2, 2013	Name					
Fibonacci Sequ	ence and the Golden Ratio PHI	period	1	2	3	5	6

The Fibonacci Sequence is a list of numbers that begins with 1, 1, ...

Every number that follows is the sum of the previous two numbers in the sequence.

n	1	2	З	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
a_n	1	1																						

- 1. Complete the first 24 terms of the Fibonacci sequence in the table below
- 2. Use a calculator and find the ratio of consecutive terms of the Fibonacci sequence. Write your answers as a decimal using five decimal places.

Ratio	$\frac{a_2}{a_1}$	$\frac{a_3}{a_2}$	$\frac{a_4}{a_3}$	$\frac{a_5}{a_4}$	$\frac{a_6}{a_5}$	$\frac{a_7}{a_6}$	$\frac{a_8}{a_7}$	$\frac{a_9}{a_8}$	$\frac{a_{10}}{a_9}$	$\frac{a_{11}}{a_{10}}$	$\frac{a_{12}}{a_{11}}$	$\frac{a_{13}}{a_{12}}$	$\frac{a_{14}}{a_{13}}$	$\frac{a_{15}}{a_{14}}$
a_{n+1}														
a_n														
to 5														
Decimal														
Places														

3. What do you notice about the ratio of consecutive terms as the Fibonacci numbers get larger and larger?

4. Find the ratio of
$$\frac{a_{21}}{a_{20}}$$
 = Find the ratio of $\frac{a_{24}}{a_{23}}$ =

The value that these ratios appear to be converging on is a number called PHI ϕ or Φ = 1.618 0339 887 and was described by Johannes Kepler as one of the "two great treasures of geometry." The other is the Pythagorean Theorem.

http://www.goldennumber.net/geometry/

http://www.goldennumber.net/spirals/ http://www.goldennumber.net/nautilus-spiral-golden-ratio/

http://www.goldennumber.net/geometry/

http://www.goldennumber.net/spirals/ http://www.goldennumber.net/nautilus-spiral-golden-ratio/