Geometry
Module 7.6

Name period 1 2

Shifty Functions: We will use the TI-84 graphing calculator to examine transformations of functions.
Write the equation for the graph of $f(x)$ shown on the coordinate grid. Graph $f(x)$ on the TI-84. Also graph $g(x)$ and $h(x)$ using function notation on the TI-84. Describe in words $g(x)$ and $h(x)$ as transformations of $f(x)$.

1. $f(x)=$ \qquad
$g(x)=f(x)+2$
describe:
$h(x)=f(x+4)$ describe:

2. $f(x)=$ \qquad
$g(x)=f(x)-3$
describe:
$h(x)=f(x-3)$
describe:

3. $f(x)=$ \qquad

$$
g(x)=f(x)-1
$$

describe:

$$
h(x)=f(x-4)
$$

describe:

Shifty Shapes: Use the vertical and horizontal shifting ideas from above to graph and describe the transformations of the shape below.

Let's call the shape below... $\operatorname{Shape}(X)$ which we say and read as "Shape of X "
4. Graph: Shape(X)-5

Describe:

Graph: \quad Shape $(X+5)$
Describe:

5. Graph:

Shape(X) +6
Describe:

Graph:
Describe:

				\mathbf{Y}					

6. Graph: $\quad \operatorname{Shape}(X)-4$ Describe:

Graph: $\quad \operatorname{Shape}(X+4)$
Describe:

				\mathbf{Y}					
									\mathbf{X}

Shifting Functions using Tables:

- Re-write $g(x)$ and $h(x)$ in terms of x, rather than $f(x)$ as given.
- Complete the table of values $f(x), g(x)$ and $h(x)$ for the given x-values.
- Graph all three functions on the same coordinate grid.
- Describe how $\mathrm{g}(\mathrm{x})$ values and $\mathrm{h}(\mathrm{x})$ values are transformed from $\mathrm{f}(\mathrm{x})$ values.

7.

$f(x)=\frac{1}{2} x, \quad g(x)=f(x)+3, \quad h(x)=f(x-3)$

$$
g(x)=\quad h(x)=
$$

\qquad

x	-3	-2	-1	0	1	2	3	4
$f(x)$								
$g(x)$								
$h(x)$								

Describe $g(x)$ as a translation of $f(x)$:

Describe $h(x)$ as a translation of $f(x)$:
8. Remember order of operations when completing the table.
$f(x)=x^{2}, \quad g(x)=f(x)-3, \quad h(x)=f(x+3)$
$g(x)=\ldots \quad h(x)=\ldots$

x	-3	-2	-1	0	1	2	3	4
$f(x)$								
$g(x)$								
$h(x)$								

Describe $\mathrm{g}(\mathrm{x})$ as a translation of $\mathrm{f}(\mathrm{x})$:
9. Matching: Fill in the Description Letter and the Transformation Letter in the column to match the $p(x)$ image function equation in the left-hand column.

The Pre-Image Functions are listed here:

$$
f(x)=x \quad g(x)=-x \quad h(x)=\frac{1}{2} x \quad j(x)=-2 x \quad k(x)=3 x \quad m(x)=-\frac{1}{3} x
$$

Image Functions	Descr LETTER	Trans LETTER		Description	Transformation Equation
$1 p(x)=x+5$			A	Translate $\mathrm{g}(\mathrm{x})$ left 7 units	$p(x)=k(x-5)$
$2 p(x)=\frac{1}{2} x-7$			B	Translate j(x) left 3 units \& down 4 units	$p(x)=m(x-4)+3$
$3 \quad p(x)=3(x-5)$			C	Translate $\mathrm{k}(\mathrm{x})$ right 5 units	M $p(x)=j(x+3)-4$
$4 \quad p(x)=-(x+7)$			D	Translate $\mathrm{h}(\mathrm{x})$ right 5 units \& down 7 units	$p(x)=h(x)-7$
$5 \quad p(x)=-2(x+3)-4$			E	Translate $m(x)$ right 4 units \& up 3 units	$p(x)=h(x-5)-7$
$p(x)=-\frac{1}{3}(x-4)+3$			F	Translate $\mathrm{h}(\mathrm{x})$ down 7 units	$p(x)=f(x)+5$
$7 \quad p(x)=\frac{1}{2}(x-5)-7$				Translate $\mathrm{f}(\mathrm{x})$ up 5 units	R $p(x)=g(x+7)$

10. Communicate Your Understanding:

If $f(x)=g(x)+k$, describe the transformation to $\mathrm{g}(\mathrm{x})$ that produces $\mathrm{f}(\mathrm{x})$ when ...the k-value is positive:
...the k-value is negative:

If $f(x)=g(x-h)$, describe the transformation to $g(x)$ that produces $f(x)$ when ...the h-value is positive:
...the h-value is negative:

If $f(x)=g(x-h)+k$, describe the transformation to $g(x)$ that produces $f(x)$ when ...the h-value and k-value are positive: ...the h-value and k-value are negative:

Topic: Vertical translations of linear equations
The graph of $f(x)$ and the translation form equation of $g(x)$ are given. Graph $g(x)$ on the same grid and write the slope-intercept equation of $f(x)$ and $g(x)$.
11. $g(x)=f(x)-5$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad
$12 g(x)=f(x)+4$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad
13. $g(x)=f(x)-6$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad

Topic: Horizontal translations of linear equations

The graph of $f(x)$ and the translation form equation of $g(x)$ are given. Graph $g(x)$ on the same grid and write the slope-intercept equation of $f(x)$ and $g(x)$.
14. $g(x)=f(x+6)$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad
15. $g(x)=f(x+5)$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad
Slope-Intercept form
16. $g(x)=f(x-4)$
a.

b. $f(x)=$ \qquad
c. $g(x)=$ \qquad

