Geometry
Module 7.4

STARTER:

Topic: Vertical transformations of graphs.
1 Use the graph below to draw a new graph that is translated UP 3 units.

Name
$\begin{array}{llllll}\text { period } & 1 & 2 & 3 & 5 & 6\end{array}$

2 Use the graph below to draw a new graph that is translated DOWN 4 units.

You are given the equation of $f(x)$ and the transformation $g(x)=f(x)+k$. Graph both $f(x)$ and $g(x)$. Describe how $g(x)$ is transformed from $f(x)$. Write the linear equation for $g(x)$ below the graph.
4. $f(x)=0.5 x$

$$
g(x)=f(x)-3
$$

Describe:
$g(x)=$ \qquad

The equation and the graph of $f(x)$ are given. Based on the given graph, describe how $f(x)$ has been translated to produce $g(x)$. Write the equation of $g(x)$ in the form $g(x)=f(x)+k$, then simplify the equation of $g(x)$ into slopeintercept form.
5. $f(x)=1 / 4 x-3$

Describe how $f(x)$ has been
a. transformed to produce $g(x)$.
b. $g(x)=$ \qquad

$$
g(x)=\frac{}{\text { Slope-Intercept form }}
$$

6. $f(x)=-2 x+5$

Describe how $f(x)$ has been
a. transformed to produce $g(x)$.
b. $g(x)=$ \qquad
Translation form

$$
g(x)=\frac{}{\text { Slope-Intercept form }}
$$

You are given information about $f(x)$ and $g(x)$. Rewrite $g(x)$ in translation form: $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k} \quad$ Describe how $\mathrm{f}(\mathrm{x})$ has been transformed to produce $\mathrm{g}(\mathrm{x})$.

$$
\text { 7. } \begin{aligned}
f(x) & =7 x+13 \\
g(x) & =7 x-5
\end{aligned}
$$

$g(x)=$ \qquad Describe:
10.

x	$\boldsymbol{f (x)}$	$\boldsymbol{g}(x)$
3	11	26
10	46	61
25	121	136
40	196	211

$$
g(x)=\frac{}{\text { Translation form }}
$$

Describe:
8. $f(x)=22 x-12$
$g(x)=22 x+213$
$g(x)=$

Describe:
11.

\mathbf{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
-4	5	-42
-1	-1	-48
5	-13	-60
20	-43	-90

$g(x)=\frac{\text { Translation form }}{}$
Describe:
9. $f(x)=-15 x+305$
$g(x)=-15 x-11$
$g(x)=\frac{\text { Translation form }}{}$ Describe:
12.

\mathbf{x}	$\boldsymbol{f}(x)$	$\boldsymbol{g}(x)$
-10	4	-15.5
-3	7.5	-12
22	20	0.5
41	29.5	10

$g(x)=$ \qquad

Describe:

